The Multiobjective Genetic Algorithm Applied to Benchmark Problems

نویسندگان

  • R. C. PURSHOUSE
  • P. J. FLEMING
  • P. J. Fleming
چکیده

The multiobjective genetic algorithm (MOGA) has been applied to various real-world problems in a variety of fields, most prominently in control systems engineering, with considerable success. However, a recent empirical analysis of multiobjective evolutionary algorithms (MOEAs) has suggested that a MOGA-based algorithm performed poorly across a diverse set of two-objective test problems. In this report, it is shown that a conventional MOGA with standard settings can provide improved performance, but this still compares unfavourably to the best-performing contemporary MOEA, the Strength Pareto Evolutionary Algorithm (SPEA). The importance of the MOEA as a framework is stressed and, consequently, a real-coded MOGA for real-parameter multi-criterion problems is developed using modern guidelines for the design of evolutionary algorithms. This MOGA is shown to outperform all other published results across the benchmark problems. This does not suggest that MOGA is the ‘best’ MOEA, rather that a considered implementation of the methodology is required in order to reap full rewards. This study also questions the effectiveness of the traditional fitness sharing method of niching, with respect to the current set of multiobjective benchmark problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems

In this paper, a hybrid meta-heuristic algorithm, based on imperialistic competition algorithm (ICA), harmony search (HS), and simulated annealing (SA) is presented. The body of the proposed hybrid algorithm is based on ICA. The proposed hybrid algorithm inherits the advantages of the process of harmony creation in HS algorithm to improve the exploitation phase of the ICA algorithm. In addition...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Solving multiobjective linear programming problems using ball center of polytopes

Here‎, ‎we aim to develop a new algorithm for solving a multiobjective linear programming problem‎. ‎The algorithm is to obtain a solution which approximately meets the decision maker's preferences‎. ‎It is proved that the proposed algorithm always converges to a weak efficient solution and at times converges to an efficient solution‎. ‎Numerical examples and a simulation study are used to illu...

متن کامل

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

Monitoring process variability: a hybrid Taguchi loss and multiobjective genetic algorithm approach

The common consideration on economic model is that there is knowledge about the risk of occurrence of an assignable cause and the various cost parameters that does not always adequately describe what happens in practice. Hence, there is a need for more realistic assumptions to be incorporated. In order to reduce cost penalties for not knowing the true values of some parameters, this paper aims ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001